## Drain/Refill Concentration Calculation

Christine_208

In general, concentration, $C$, is given by $C=\frac{(a m t . \text { of stuff to be diluted) }}{\binom{\text { total volume into which }}{\text { stuff is to be diluted }}}$.

So after the first drain, of volume $V_{d}$, some part of the original remains, $V_{r}$.

Then after refilling with water with an amount equal to that drained off, $V_{d}$, the new concentration is $C_{1}=\frac{V_{r}}{V_{r}+V_{d}}=\frac{V_{r}}{V_{\text {total }}}$.

If after allowing the new solution to mix thoroughly, the same amount is now drained off, the amount of the original stuff is diluted by the fraction $C_{1}$ so that the amount of the original stuff left is given by $C_{1} V_{r}$.

When water is filled back in, the new second concentration is
$C_{2}=\frac{\left(C_{1} V_{r}\right)}{V_{\text {total }}}=C_{1}\left(\frac{V_{r}}{V_{\text {total }}}\right)=C_{1} \cdot C_{1}=\left(C_{1}\right)^{2}=C_{1}^{2}$.

For a third drain, the amount of the original stuff remaining is $C_{1}\left(C_{1} V_{r}\right)=C_{1}^{2} V_{r}$ which when diluted makes for a new concentration of
$C_{3}=\frac{\left(C_{1}^{2} V_{r}\right)}{V_{\text {total }}}=C_{1}^{2}\left(\frac{V_{r}}{V_{\text {total }}}\right)=\left(C_{1}\right)^{3}=C_{1}^{3}$.

In general, after $n$ drains and refills, the new concentration is $C_{n}=C_{1}^{n}$ where $C_{1}=\frac{V_{r}}{V_{\text {total }}}$.

For a 1999 Blazer, the total coolant capacity including the overflow tank is 11.7 qts. But, for a flushing sequence, the only amount that matters is what remains in the block, radiator, and the rest of the cooling system not including the overflow tank. This amount, the $V_{\text {total }}$ used in the calculations, is 11.7 qts minus the volume of the
overflow tank which has a volume of 1.5 qts . So for purposes of the dilution calculations, $V_{\text {total }}=10.2 \mathrm{qts}$.

The amount that can be drained from the radiator spigot is also needed and this was measured to be approximately 5.4 qts .

Thus the amount left in the system after the first drain is $V_{r}=V_{\text {total }}-V_{d}=10.2 \mathrm{qts}-5.4 \mathrm{qts}=4.8 \mathrm{qts}$. Thus the concentration after one drain and refill is $C_{1}=\frac{V_{r}}{V_{\text {tot }}}=\frac{4.8}{10.2}=0.47$.

So, using the formula above, the concentration after $n$ drains and refills, the concentration of the original stuff is $C_{n}=(0.47)^{n}$ where for $n=4$, $C_{4}=0.049=4.9 \%$.

If the original concentration of coolant was $50 \%$, then after the $n^{\text {th }}$ drain and refill, the amount of coolant remaining is $50 \%$ of $4.9 \%$ or about $2.5 \%$.

